Sufficient amounts of functional HOP2/MND1 complex promote interhomolog DNA repair but are dispensable for intersister DNA repair during meiosis in Arabidopsis.
نویسندگان
چکیده
During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The homologous-pairing protein2/meiotic nuclear division protein1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases radiation sensitive51 (RAD51) and disrupted meiotic cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair.
منابع مشابه
Mnd1 Is Required for Meiotic Interhomolog Repair
BACKGROUND While double-strand break (DSB) repair is vital to the survival of cells during both meiosis and mitosis, the preferred mechanism of repair differs drastically between the two types of cell cycle. Thus, during meiosis, it is the homologous chromosome rather than the sister chromatid that is used as a repair template. RESULTS Cells attempting to undergo meiosis in the absence of Mnd...
متن کاملSignificance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis
The evolutionarily conserved Hop2-Mnd1 complex is a key cofactor for the meiosis-specific recombinase Dmc1. However, emerging evidence has revealed that Hop2-Mnd1 is expressed in somatic tissues, primary human fibroblasts and cell lines, and that it functions in conjunction with the Rad51 recombinase to repair damaged telomeres via the alternate lengthening of telomeres mechanism. Here, we reve...
متن کاملThe Interplay of RecA-related Proteins and the MND1–HOP2 Complex during Meiosis in Arabidopsis thaliana
During meiosis, homologous chromosomes recognize each other, align, and exchange genetic information. This process requires the action of RecA-related proteins Rad51 and Dmc1 to catalyze DNA strand exchanges. The Mnd1-Hop2 complex has been shown to assist in Dmc1-dependent processes. Furthermore, higher eukaryotes possess additional RecA-related proteins, like XRCC3, which are involved in meiot...
متن کاملThe dual role of HOP2 in mammalian meiotic homologous recombination
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2-MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction...
متن کاملThe recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis.
Meiosis ensures the reduction of the genome before the formation of generative cells and promotes the exchange of genetic information between homologous chromosomes by recombination. Essential for these events are programmed DNA double strand breaks (DSBs) providing single-stranded DNA overhangs after their processing. These overhangs, together with the RADiation sensitive51 (RAD51) and DMC1 Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2013